Triple-product Asymmetries A Snowmass Letter of Interest

Bhubanjyoti Bhattacharya (bbhattach@ltu.edu)

with Alakabha Datta, University of Mississippi

Prepared for:

Snowmass Rare and Precision Frontier Town-Hall Meeting; Remote presentation https://wolfr.am/PYKw0TBR

October 02 2020

Triple products

- Processes with more than three final-state particles
 Assuming final state spin/polarizations not directly measured
- Four-body final state has 5 kinematic variables
 Possible choice: 2 invariant masses + 3 helicity angles

Differential decay rate:
$$\frac{d^5\Gamma}{dq_{12}^2 dq_{34}^2 d\cos\theta^* d\cos\theta_\ell d\chi} \propto |\mathcal{M}|^2$$
$$|\mathcal{M}|^2 = \sum_j K_i(q_{12}^2, q_{34}^2) f_i(\theta^*, \theta_\ell, \chi)$$

Triple-products:
$$f_i \propto \sin \chi = (\hat{n}_{12} \times \hat{n}_{34}) \cdot \hat{z}$$

 \hat{n}_{ij} defines plane containing final states i,j $\chi=$ azimuthal angle about decay axis

Triple-product Asymmetries

- Coefficients of TP angular functions: $K_i \propto \text{Re}/\text{Im}(A_a A_b^*)$ Helicity amplitudes A_a contain physics information
- ullet TP Asymmetry: $X = {
 m Im}(A_a A_b^* ar{A}_a ar{A}_b^*)$
 - ightarrow $ar{A}$ represents CP conjugate of A
 - $ightarrow \bar{X} = -X \Rightarrow X \text{ is CP-odd}$
- ullet Compare Γ and $ar{\Gamma}$ o find non-zero true CP-Violating TPAs
- In order to observe CP violation
 - \Rightarrow measure a non-zero true TPAs
- $d\Gamma + d\Gamma$ contains TPAs

 TP terms $\propto \sin \chi$ \rightarrow flip sign from process to anti-process

Potential for discovery

- Form of true-CPV TP terms: Phases $\rightarrow \delta$ (CP-even), ϕ (CP-odd) $\operatorname{Im}(A_a A_b^*) = |A_a| |A_b| \sin(\Delta \delta_{ab} + \Delta \phi_{ab})$
- Strong-phase differences not needed for non-zero TPAs $\Rightarrow \operatorname{Im}(A_a A_b^* \bar{A}_a \bar{A}_b^*) = 2|A_a||A_b|\cos(\Delta \delta_{ab})\sin(\Delta \phi_{ab})$
- \bullet Single CP-odd phase in the SM $\Rightarrow~\Delta\phi=0~\Rightarrow~$ TPAs vanish
- Measurement of non-zero CPV TPA \to unambiguous signal \Rightarrow New ϕ beyond the SM \Rightarrow New source of CPV
- ullet Measure event-distribution asymmetry in $\sin\chi$

$$A_{\text{TP}} = \frac{N(\sin \chi > 0) - N(\sin \chi < 0)}{N(\sin \chi > 0) + N(\sin \chi > 0)}$$

Need for theory progress

- In the event of observation of TPAs
 - ightarrow Model based theory predictions for TPAs
 - → Analysis of theoretical cleanliness of observables (hadronic uncertainties in determination of new CP-odd phase?)
- ullet TPAs may be observed in semi-leptonic B decay modes
 - * $B \to K^*\ell^-\ell^+$ (precision?)
 - * $B \to D^* \mu(\tau) \nu_{\mu(\tau)}$ (additional observables?)
- ullet Hadonic B decay modes: $B o K^* \bar{K}^*$
- ullet Identify other multi-body channels o optimum for experiments?
- Meson mixing and time-dependence effects?

Summary

- New sources of CP violation (BSM) are necessary
- CPV can help distinguish models
- Angular asymmetries are a great target
- True TPAs need new CP-odd phase only (strong phase)
- Non-zero measurement for true-CPV TPAs ⇒ New physics
- Theory progress needed:
 - \rightarrow find optimal processes for searches
 - \rightarrow interpret data/search results to quantify NP

References

- Valencia, PRD 39, 3339 (1989)
- Datta and London, arXiv:hep-ph/0303159
- Bensalem, Datta, and London, arXiv:hep-ph/0205009, arXiv:hep-ph/0208054
- Datta, Duraisamy, and London, arXiv:1103.2442
- Datta, Duraisamy, and London, arXiv:1207.4495
- BB, Datta, Duraisamy, and London, arXiv:1306.1911
- Alok et al. (with BB), arXiv:1703.09247
- BB, Datta, Kamali, and London, arXiv:1903.02567
- BB, Datta, Kamali, and London, arXiv:2005.03032

Thank You!

Back-up Slides

Angular distribution in $B \to D^* \ell \bar{\nu}$

- ullet 4-body decay through D^* intermediate \Rightarrow (5 1 =) 4 parameters
- ullet Invariant mass (q^2) and angles $(heta^*, heta_\ell, \chi)$